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1. Introduction 

Philosophers such as Sharon Street (2006) have pressed moral realists with an intuitive 

evolutionary debunking argument (EDA) along (very roughly) the following lines: 

 

Moral EDA 

If moral realism is true, it would be a massive mysterious coincidence if the forces of 

evolution, history, etc. gave human beings dispositions to form true beliefs about moral 

facts. In contrast, adopting more deflationary views like Humean sentimentalism or Street’s 

constructivism lets one satisfyingly explain this accuracy without positing any such 

coincidence. Thus, we have ceteris paribus reason to reject moral realism in favor of some 

such more deflationary metaethical view (or give up pretensions to having moral 

knowledge). 

 

A common strategy for replying to this argument (and similar worries) compares the special 

knowledge the moral realist takes us to have to mathematical knowledge. It is widely accepted, 
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including by moral anti-realists, that we have significant mathematical knowledge.1 However, as 

has been noted by philosophers from Plato to Benacerraf (1973) and Field (1980) and beyond, 

human accuracy about mathematics can seem quite mysterious. For example, we can’t see or touch 

or taste mathematical objects or otherwise causally interact with them. Nor was there, presumably, 

evolutionary selection for correctly describing which abstract mathematical objects exist. And, 

more generally, we can seem to lack any kind of relationship to mathematical reality that could 

satisfactorily explain why our beliefs about mathematics would line up with mathematical facts. 

Thus, the moral realist can make the following defensive suggestion: 

 

Companions in Innocence Defense 

The apparent extra coincidences which accepting moral realism forces us to posit are no 

worse than (and apparently similar in nature to) the coincidences that would be required 

for us to have got the kind of mathematical knowledge which we clearly have. 

 

If the above Companions in Innocence claim is correct, this might suggest that the intuitions 

driving both moral and mathematical EDAs are generally untrustworthy or that there’s some 

(undiscovered) solution to mathematical EDAs which can also be used to address EDAs against 

moral realism. Thus, the question of whether and how mathematical EDAs can be answered has 

wider philosophical importance. 

	
1 Or some form of accuracy that’s very close to mathematical knowledge, such as fictionalism (see Field 

1980 and Yablo 2005). 
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It’s a common thought that mathematicians are (for one reason or another) free to make 

any logical coherent pure mathematical posits they like, so we can reduce mathematical access 

worries to access worries about a certain kind of knowledge of logical coherence. But how helpful 

is this move? In this chapter, I’ll try to help readers clarify their views on this question in two ways. 

First, I’ll review and develop a coincidence avoidance framework for evaluating access worries 

and proposed solutions to them. Second, I’ll taxonomize and explain how different intuitive ideas 

about mathematics lead to different popular positions on what kind of knowledge of logical 

coherence would be needed to explain our mathematical knowledge in the above sense. 

 

2. Formulating EDAs 

2.1 Traditional Approaches and Easy Answers 

Prima facie, it might seem that EDAs have something like the following form: 

 

Explanatory Demand EDA 

The realist’s inability to explain the (reliable) correlation between our judgments about 

some domain D and relevant facts about D casts doubt on their position. 

 

However, (if taken literally) this way of formulating EDAs faces a problem. The problem is that a 

realist can answer the above EDA by providing any explanation (from premises the realist accepts) 

for human accuracy about the domain in question—even deeply intuitively unsatisfying ‘buck 

passing’ explanations that explain away apparent commitment to one mysterious coincidence by 

appealing to another! 
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For example, imagine that the moral realist turned out to be able to show the following. As 

a matter of physics, chemistry, and game theory, etc. (on planets involving earth-like basic 

chemistry), intelligent life could only evolve under certain conditions involving resource scarcity, 

payoffs for collaboration, etc. 

Furthermore, any intelligent creatures evolving under those circumstances would face 

intense selective pressure to have moral sensibilities of a certain kind: to cooperate under certain 

circumstances and exercise a certain degree of nepotism, etc. And (it follows from first-order moral 

principles the realist believes that) these evolutionarily favored sensibilities also happen to be 

largely correct.2 So, it follows that evolution occurring on planets like ours is reliably disposed to 

produce creatures with accurate moral sensibilities whenever it produces intelligent creatures at 

all. 

In a sense, this theory would allow a moral realist to explain the correlation between human 

moral sentiments and relevant moral facts. However, this theory would do nothing to answer 

intuitive access worries. For it explains away one seeming coincidence (our being reliably disposed 

to form true moral beliefs) by appeal to another (that the game theoretically optimal moral 

sentiments for a certain environment turn out to be the ones that correctly reflect moral realist 

facts). 

Various ways of reformulating or clarifying EDAs to avoid this problem have been tried 

(and run into trouble). 

	
2 More pedantically, they are sufficiently accurate to provide a reliable basis for forming true beliefs about 

moral realist facts (when suitably reflected on, etc.). 
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For example, at first glance one might be tempted to say the above explanations don’t 

answer EDAs because they beg the question by appealing to assumptions (e.g., our acceptance of 

true mathematical axioms) which anyone pressing an access worry about moral 

realism/mathematical knowledge would deny. But this seems to transform EDAs into a general 

skeptical demand which most philosophers are already committed to rejecting. EDAs are 

interesting because they seem to provide a more powerful and interesting challenge than general 

skepticism because they seem to reveal an internal tension in the realist’s views, not just that (like 

everyone else who has beliefs) the realist accepts some claims which can’t be justified or explained 

from indubitable premises. 

Alternately, one might reformulate EDAs as claims that the realist is committed to violating 

some kind of general epistemic constraint, requiring causal or explanatory connection between 

justified/knowledgeable beliefs and the subject matter of these beliefs, like the following: 

 

• If S knows that P, then S’s belief that P is caused by the fact that P. (Benacerraf 1973) 

• If S rationally believes that P, then S must be open to the possibility that her belief causes 

or is caused by (or grounds or is grounded in) P. (Korman & Locke 2020) 

 

However, finding an otherwise plausible such constraint has proved difficult. Note that, for 

example, the above constraints (famously) seem to rule out knowledge of the future: my belief that 

the sun will rise tomorrow isn’t caused by or grounded in the fact that the sun will rise tomorrow 
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(or vice versa). These constraints also threaten our knowledge of claims like3 ‘A number is even if 

and only it if it’s divisible by 2’. For the fact that even numbers are divisible by two isn’t caused 

or constituted by my beliefs or vice versa.4 We can often intuitively address EDA worries by giving 

a metasemantic explanation for human accuracy, rather than pointing out any kind of causal or 

grounding relationship. For example, one might say that our knowledge that ‘even numbers have 

the form 2k and odd numbers the form 2k + 1’ doesn’t seem to require benefiting from a mysterious 

coincidence (and hence doesn’t raise an EDA worry) because if we’d been inclined to talk the 

other way, we’d have meant different things by ‘even’ and ‘odd’ so that we still expressed a truth. 

So, we probably don’t want to formulate EDAs in a way that rules such explanation out. 

 

2.2 The Benefits of Being Lazy 

Instead, I propose that we should be (strategically) lazy and formulate EDAs by appeal to informal 

coincidence avoidance intuitions. Such informal coincidence recognition abilities are already 

widely accepted and fruitfully used in science. In matters of a priori theory choice, we take 

ourselves to have ceteris paribus reason to favor theories that are committed to fewer coincidences 

(without further conceptual analysis of what it takes to there to be a coincidence/for some regularity 

to cry out for further explanation). And we can invoke such intuitions to formulate an EDA along 

the following lines: 

 

Coincidence Avoidance Formulation of EDA 

	
3 Note that the truth of this claim doesn’t require that there are any numbers. 

4 Cf. Boghossian (1996) on metaphysical vs. epistemic analyticity. 
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A realist theory faces an EDA to the extent that combining this theory with uncontroversial 

background beliefs (including claims about evolutionary history) forces us to posit some 

significant extra coincidence (involved in the match between human beliefs and facts about 

the domain in question) which could be avoided by adopting a less realist view. 

 

Thinking about EDAs in this way nicely explains why the trivial explanation for human moral 

accuracy imagined above wouldn’t suffice to answer EDAs. The problem is that this trivial 

explanation dispels one apparent coincidence (humans have largely correct moral sentiments) by 

appealing to another (the evolutionarily optimal degree moral sentiments in environments allowing 

for the development of intelligent life on earthlike planets turn out to be the ones that get moral 

realist facts right), which is left unexplained. So, this explanation doesn’t change the appearance 

that adopting moral realism forces one to posit some significant extra coincidence.5 The problem 

with the above easy explanations isn’t that they appeal to some controversial belief the realist holds 

and the access worrier rejects, it’s that they appeal to additional controversial coincidences the 

realist accepts. 

Note that, blocking trivial responses to EDAs in this way doesn’t collapse EDAs into a 

mere skeptical demand. For EDAs understood in terms of coincidence avoidance still point us to 

an internal tension in the realist’s view. Someone pressing an EDA appeals to intuitions about 

coincidence reduction in theory choice which the realist shares. They suggest that the realist is— 

	
5  I.e., some coincidence that could be avoided by adopting some comparably attractive less realist 

alternatives to this view. 
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by their own lights—committed to positing extra coincidences that could be avoided by adopting 

certain (comparably attractive) more deflationary alternative views. 

I suspect we can give a related diagnosis of many of the intuitively unsatisfying answers to 

EDAs in the recent literature on ‘third factor explanations of human accuracy about moral facts.65 

	
6 A very simple example of such an unsatisfying explanation is Linnebo’s (2006) “Boring explanation” of 

human mathematical accuracy, which (basically) explains mathematicians’ tendency to have true beliefs 

by appeal to the idea that they reliably believe things that can be derived from the ZFC axioms, which are 

all true, together with the fact that all logically necessary consequences of truths are truths. This story 

intuitively fails to answer access worries because it explains away one apparent coincidence (disposition to 

reliably accept true claims as mathematical theorem) by appeal to another (acceptance of entirely true 

mathematical axioms). 

 For a more interesting case of such a third-factor explanation, consider David Enoch’s (2010) 

intuitively unsatisfying explanation of human moral accuracy summarized below: 

Enoch’s Third Factor 

We evolved to have moral sentiments that promote survival. Many (but not all) things that promote 

survival happen to be (in the robust metaethical realist sense) morally good. The fact that survival 

is good explains the correlation between our normative beliefs and the normative facts. 

I think Enoch’s third-factor answer to moral EDAs faces a dilemma. Either it fails to account for the degree 

of moral accuracy moral realists take us to have or (if supplemented in a natural way) it fails like Linnebo’s 

Boring Explanation because it explains one apparent coincidence by appeal to another, and thus doesn’t 

reduce the total number of coincidences the realist is apparently committed to positing. 

First, suppose we read Enoch to simply be saying that many (but by no means all) things that are 

morally good also promote survival. For example, looking out for children is both morally good and 
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survival promoting, and one might list many other such things. This simple story can explain how many 

but not all of our moral beliefs are correct, and (unlike Linnebo’s Boring Explanation) it plausibly has the 

merit of not appealing to any massive striking coincidence: many survival promoting things being good 

isn’t more mysterious that many black things being shiny. So, it doesn’t threaten to explain one big seeming 

coincidence by appeal to another. 

However, this simple version of Enoch’s story doesn’t suffice to explain the accuracy about morals 

any normal moral realist is committed to. It’s true that we only expect our moral beliefs to be largely true, 

not massively or exceptionlessly correct at the current moment—and perhaps Enoch’s story explains this 

kind of accuracy. But we also take our accuracy about morals to go beyond this, and include things which 

Enoch’s simple story does not explain. For example, one might think that we’re disposed to be massively 

or perfectly correct about morals if given sufficient time for reflection, sympathizing, learning descriptive 

facts and approaching reflective equilibrium. And many realists think their tendency to have true moral 

beliefs isn’t restricted to approving of actions that happen to be both morally good and survival promoting; 

they think they are decently accurate (or at least significantly better than chance) at reasoning about which 

of the things that don’t promote survival are nonetheless morally good. 

We might fix this problem by adding significant elaboration to Enoch’s proposal by finding a 

number of additional “third factors” corresponding to all the things that aren’t survival promoting which 

we value, until we get a theory which implies the disposition near-perfect match between moral judgment 

and moral fact under reflective equilibrium which many people take themselves to have. But once we have 

supplemented Enoch’s theory in this way, it does seem that we’re left with a massive apparent coincidence 

(for we are saying that many quite independent heterogenous things which are causally likely to be valued 

by intelligent creatures evolving in the environment we came from also happen to be good). 
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One might fear that taking this lazy approach to EDAs (not attempting to analyze what it 

takes to be committed to a coincidence or provide an explanation that banishes coincidence further) 

prevents the realist from plausibly defending themselves or makes it unlikely that access worries 

could be resolved. However, as I argue in Berry (2020), I think this is not the case. 

For example, thinking about EDAs in accordance with the coincidence avoidance 

framework above also allows for a natural strategy for answering them. If EDAs are fundamentally 

arguments by appeal to impossibility intuitions (specifically intuitions that no explanation of 

human knowledge capable of dispelling apparent realist commitment to extra coincidences7 is 

conceivable), then they can be answered by providing a kind of toy model explanation which 

(unlike the ones considered above) doesn’t leave the realist intuitively committed to positing some 

extra coincidence. 

Note that, on the story above, EDAs arise from a ‘how possibly’ question. We can’t see 

how, e.g., mathematicians could possibly have acquired the accuracy they seem to have, without 

	
In Berry (2020), I try to bring out a related implausibility intuition by considering the following 

Enoch-inspired third-factor explanation of (an aspect) human moral accuracy:  

EV-MOR 

It is a robust fact that, in all circumstances conducive to the evolution of intelligence, natural 

selection favors the trait of advocating and valuing as being twice as generous with immediate 

family as with other individuals. Furthermore, it is morally correct to be (exactly) twice as generous 

with family, and this is a necessary truth. 

7 By this I mean coincidences that one could avoid by adopting a comparably attractive less realist view of 

our knowledge regarding the domain in question. 
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benefiting from some kind of striking coincidence that cries out for explanation. Yet adequate 

explanation8 seems inconceivable. Accordingly, a natural way to answer to access worries would 

be to dissolve this feeling of inexplicability by providing a toy model [11, 30, 5], i.e., a sample 

explanation of how mathematical knowledge could have arisen. This sample explanation doesn’t 

have to fit all known facts about how human mathematical knowledge actually arose. However, it 

does have to keep the key features of our actual situation that make adequate explanation seem 

inconceivable (e.g., our lack of causal contact with mathematical objects or logically possible 

worlds)9 . It also cannot be buck-passing, in the sense that it explains one mysterious extra 

correlation the mathematical realist is committed to by appealing to another (e.g., one can’t solve 

access worries merely by explaining mathematicians’ acceptance of largely true theorems merely 

by appeal to their acceptance of largely true axioms). 

 

2.3 Special Reasons for Distrust? 

Perhaps some remarks of Clarke-Doane’s (2016) suggest an objection to the lazy approach to 

EDAs advocated above. An objector might allow that we have a generally reliable faculty of 

spotting unattractive coincidences, and that it reliably guides our theory choice in the sciences. 

	
8  By ‘adequate explanation’ here, I mean explanation that banishes the appearance that accepting 

mathematical knowledge commits one to some ‘extra’ coincidence beyond those (if any) required to 

account for our possession of the three general purpose non-mathematical faculties noted as being presumed 

above. 

9 See Nozick (1981) and Cassam (2007) on blocking conditions, and Berry (2018b: pp 2288 n. 3).  
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However, they might argue that we have special reason to be suspicious of the coincidence 

avoidance intuitions that drive mathematical/moral EDAs, as follows. 

In scientific cases, intuitively coincidence-banishing explanations tend to involve deducing 

some kind of modal stability from counterfactual supporting laws. Thus, one might think, a realist 

will succeed in giving a coincidence banishing explanation if they can deduce the modal stability 

of all striking correlations endorsed by their view from general-counterfactual supporting laws 

(which the realist accepts). And the necessity of mathematical/moral truths makes it easy for a 

realist defending against EDAs to derive the fact that human accuracy about mathematics/morality 

is modally stable in various ways (as below) from general laws: 

 

• All of the closest possible worlds where mathematical facts are different (there are none) 

are ones where we have correspondingly different beliefs. 

• Any story about how we’re reliably inclined to have certain math beliefs would (when 

combined with relevant math facts and the fact that those are necessary truths) explain why 

we couldn’t easily have formed false math beliefs. 

 

So, one might think, human accuracy about math/morals can’t genuinely cry out for further 

explanation, and the coincidence avoidance intuitions which EDAs draw upon must involve some 

kind of illusion. 

However, I claim, this objection fails because there’s actually strong independent reason 

to reject the key principle suggested above: that no coincidence can cry out for explanation, once 

the modal stability of all relevant regularities has been derived by appeal to general attractive laws. 
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Specifically, considering mathematical practices shows that certain regularities involving pairs of 

mathematical facts (both known to be necessary truths) can still cry out for explanation. 

Mathematical regularities (e.g., that some particular 7+ digit number turn out to play a special role 

in two apparently unrelated areas of mathematics10) can intuitively cry out for explanation. And 

mathematicians seem to rationally and fruitfully respond to this cry (favoring the hypothesis that 

some theorem more closely connecting the two facts and explaining the regularity exists, and 

guiding their research accordingly). 

In these cases where regularities within pure mathematics cry out for explanation, both 

sides of the regularity have already been derived from general mathematical principles (like the 

ZFC axioms) that are necessary truths. So we already have perfect modal/counterfactual stability 

of the kind invoked above. Thus, we already have strong reason to think that coincidental seeming 

regularities can cry out for further explanation, even when their modal stability has been perfectly 

explained. And one might further suspect that, because of the connection between EDAs and 

coincidence avoidance intuitions, we shouldn’t hope to cash out EDAs in terms of demands to 

demonstrate any kind of modal stability condition. 

	
10 Recent Fields-medal winning research was inspired by noting a regularity of this kind and looking for a 

theorem to explain it. See Klarreich (2017). 
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3. Mathematical EDAs and Knowledge of Logical Coherence 

3.1 The Structuralist Consensus 

With this coincidence avoidance approach in mind, let’s now turn to mathematical EDAs. In this 

section, I’ll discuss how a certain feature of contemporary mathematical practice suggests that (for 

one reason or another) mere knowledge of logical coherence would suffice to give us reliable true 

beliefs about mathematics. 

This approach appeals to the following common idea about mathematicians’ freedom, 

suggested by mathematical practice itself. Contemporary mathematical practice seems to allow 

mathematicians freedom to accept almost any logically coherent total collection of pure 

mathematical axioms they like.11 

Mathematician-turned-philosopher Julian Cole puts the point as follows: 

 

Reflecting on my experiences as a research mathematician [some] things stand out. First, the 

frequency and intellectual ease with which I endorsed existential pure mathematical statements and 

	
11 Here I omit various details about spelling this out. For example, for these purposes, candidate ‘pure 

mathematical axioms’ are understood to be implicitly content restricted to the new mathematical structure 

in question (e.g., mathematicians who accept the Peano axioms characterizing the natural numbers don’t 

accept that literally everything has a successor, but only that every number has a successor). So, endorsing 

mathematicians’ freedom in the sense above does not commit one to the far more controversial claim that 

mathematicians would reliably form true beliefs if they adopted axioms implying sentences like “∀x∀yx = 

y”. See Berry (2018b, 2022) for a little more detail on this point. 
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referred to mathematical entities. Second, the freedom I felt I had to introduce a new mathematical 

theory whose variables ranged over any mathematical entities I wished, provided it served a 

legitimate mathematical purpose. (Cole 2009 : 589 ) 

 

A related feature of contemporary mathematical practice which (also) contrasts with traditional 

moral realist understandings of moral talk concerns interpretations of disagreement. Traditional 

moral realists aren’t inclined to say that, e.g., people with different logically coherent ways of 

using a term with the action-guiding role of ‘permissible’ are just getting at a different aspect of 

moral reality.12 In contrast, (contemporary) mathematicians are inclined to say those who employ 

different logically coherent axioms have equally true beliefs about a different part of mathematical 

reality. 

Unsurprisingly, philosophers of many different stripes have been inclined to follow 

mathematicians’ lead and thus vindicate (in one way or another) the points about mathematicians’ 

freedom above. Thus, they have accepted the following point, which I’ll call the structuralist 

consensus: 

 

Structuralist Consensus 

Mathematicians can introduce any (or almost any) logically coherent stipulations defining 

a (pure) mathematical structure they wish. 

	
12 Cf. the Moral Twin Earth literature: e.g., Horgan & Timmons (1991). 
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Different philosophers have developed views which support the structuralist consensus in different 

ways. For example, here are a few such views in the contemporary philosophy of mathematics 

literature: 

 

• Modal Structuralism: mathematical claims really express modal claims like ‘it’s logically 

possible for there to be objects satisfying certain axioms and necessarily, if there were objects 

satisfying such and such axioms then …’. That is, the true logical structure of mathematical 

claims (or their best Carnapian explication) is something ◊D ˄ □(D →	Φ), where the ◊ 

expresses logical possibility and the □ expresses logical necessity. 

• Plentiudinous Platonism: the mathematical universe is very large, as per Balaguer (2001) and 

perhaps Neo-Fregean views13 and classic set theoretic foundationalism on which all structures 

of interest can be identified with certain sets within a large hierarchy of sets as per Bourbaki. 

• Weak Quantifier Variance: we have some freedom to choose how our language will ‘carve 

up’ the world into objects, including starting to talk in terms of additional objects (Hirsch 

2011; Thomasson 2015; Berry 2015, forthcoming b). 

– e.g., a stipulation introducing complex numbers might attempt to secure the truth of some 

sentence S that conjoins the claim that every pair of real numbers r1,r2 corresponds to a 

complex number r1 +ir2 (with r1 + 0i = r1) with the rules for complex multiplication and 

	
13  These tend to also require conceptions of mathematical structures to take a specific form, that of 

abstraction principles. 
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addition.14  This stipulation might also fix that the complex numbers are not to be 

identical to any physical objects, people, etc. 

 

If some version of the structuralist consensus is right, then plausibly you can reduce EDAs for 

math to EDAs about logical coherence knowledge. 

However, the task of accounting for our possession of the latter knowledge (without 

positing any mysterious coincidence that deniers of mathematical knowledge could avoid) is not 

trivial. Note that we need knowledge of which axioms describing pure mathematical structures are 

logically coherent (◊Φ knowledge). And such knowledge can’t be gotten by mere first-order 

logical deduction. For example, FOL deduction won’t tell you that anything is logically coherent, 

e.g., ◊(∃x)(∃y)(¬x = y). 

Recent works like Berry (2018b) have argued that some knowledge of logical coherence 

could be coincidence-banishingly explained by appeal to a kind of abductive mechanism, if 

working faculties of sensor perception, abduction/inference to the best explanation and first-order 

logical deduction (i.e., some very basic logical knowledge that poses less of an intuitive access 

worry) could be taken for granted. Note that the laws of logical possibility are supposed to be 

subject matter neutral, constraining the behavior of all objects and relations—from numbers to 

apples to ghosts or genres of novels. So, there’s some hope that we could (in effect) abductively 

learn15 general laws of logical possibility from dealing with non-mathematical objects, and then 

	
14 Here I take these addition and multiplication rules to be written in a way that implies that each complex 

numbers without an imaginary part is identical to the corresponding real number, as expected. 

15 And something analogous could happen at the level meme selection or gene selection. 
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apply them to deduce possibility claims about the very large and complex structures studied in 

(actualist or potentialist) mathematics—much as one could learn laws of physical possibility from 

experiments on the earth with pendulums, etc. and then apply them in 

space. 

However, an important question arises about how much knowledge of logical possibility is 

needed to account for the kind of mathematical knowledge we seem to have. How much logical 

coherence knowledge would the above abductive story need to be able to deliver in order to settle 

mathematical access worries? 

Opinions vary on this topic, so we’ll see that there are two interesting dimensions of 

variation within the structuralist consensus: 

 

• Mathematical metaphysics and ontology: are there mathematical objects? (The 

Plenitudinous Platonist and Quantifier Variantist will say “yes,” and the modal 

structuralist will say “no.”) Why are mathematicians free to introduce arbitrary logically 

coherent pure mathematical posits? 

• Truth value and realism: how rich is our conception of mathematical structures like the 

natural numbers, hence how much knowledge of logical coherence (and perhaps 

reference to non-first-order logical notions) is needed to explain our mathematical 

knowledge?16 

	
16 A third dimension of variation one might list concerns how many mathematical claims one takes us to 

have knowledge of as opposed to, e.g., merely conditional knowledge that certain claims are derivable from 
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I won’t argue for a position on either of the above questions here. Instead, I’ll review and discuss 

the motivations for some different common positions regarding the latter bundle of questions: what 

our conceptions of mathematical structures are like—and hence what kind of ◊Φ and (Φ → Ψ) 

knowledge is needed to answer mathematical EDAs. 

 

3.2 How Much Logical Knowledge? 

So, let’s now turn to a menu of options regarding what our conceptions of mathematical structures 

are like, e.g., what primitive logical resources may be employed in stating them. I will present 

these options in order, so that we get a kind of ladder of increasing costs and benefits along certain 

dimensions. Specifically, we will see that increasing the logical (and other) resources one takes to 

be usable in stating our conceptions of mathematical structures like the natural numbers, has the 

benefit of allowing one to make sense of more truth-value realism about mathematics. But, on the 

other hand, it has the cost of raising concerns about reference to logical vocabulary and increasing 

the amount of logical coherence knowledge needed to account for the mathematical knowledge we 

seem to have via the structuralist consensus. 

 

3.2.1 Finite First-Order Logical Conceptions 

First, you might say that all our conceptions of math objects like the natural numbers and sets can 

be articulated by a sentence using first-order logical vocabulary and mathematical vocabulary. 

	
certain axioms (without any assumption that those axioms are logically coherent). But I won’t dwell on this 

because (with some exceptions) there doesn’t seem to be huge variation on this matter. 
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Thus, for example, you might take our conception of the natural numbers to be something like the 

conjunction of the finitely many sentences in Q (Robinson’s Arithmetic). 

On this view, accounting for the mathematical knowledge via the structuralist consensus 

will only require recognizing ◊φ facts where φ is a sentence in the language of first-order logic, 

like ◊Q. 

A weakness of this view is that we seem willing to accept all instances of the induction schema 

below. That is, we’re inclined to accept all the infinitely many sentences got by substituting a 

formula φ (where φ can be any sentence in the language of first-order logic with a single free 

variable) into the schema below. And the widely used Peano Axioms (PA) for number theory 

include all instances of this schema where the relevant φ uses only number theoretic vocabulary: 

 

FOL Induction Schema 

(φ(0) ∧ (∀n)(φ(n) → φ(n + 1))) → (∀n)(φ(n)) 

 

3.2.2 Recursively Axiomatizable First-Order Conceptions 

One can address this weakness by allowing our conceptions of mathematical structures to include 

infinite collections of first-order logical axioms, provided that they are recursively axiomatizable 

(i.e., that one could, in principle, program a computer to determine whether any given first-order 

logical sentence belongs to the axioms included in the theory). This allows one to say that our 

conception of the natural numbers includes all the Peano Axioms, including the infinitely many 

instances of the induction schema above. One might also say that, whether or not we can fully state 
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such infinite theories, we can implicitly grasp and accept them via being disposed to accept each 

axiom included in them. 

On this view, accounting for mathematical knowledge via the structuralist consensus can 

require recognizing (so to speak) ◊T facts, where T is some infinite recursively axiomatizable 

theory as above. So, for example, accounting for our knowledge of the natural numbers will require 

accounting for knowledge of things like (so to speak17 ) ◊PA. Now I will discuss some costs and 

benefits which apply to both approaches above. 

A benefit of saying that our conception of mathematical structures consists in some 

collection of first-order logical axioms is that it makes access worries less severe. For, it turns out, 

all first-order logical theories are logically incoherent (require something logically impossible) if 

and only if they are syntactically inconsistent (i.e., contradiction can be derived from them).18 So, 

if mathematicians could perform infinite tasks in finite time, they could (in principle) recognize 

and reject all logically inconsistent theories just by going through all possible proofs whose 

premises belong to the relevant theory. This helps with access worries somewhat, though the help 

is limited by the fact that mathematicians obviously don’t do go through this infinite process before 

accepting candidate mathematical axioms as logically coherent. 

	
17  Note that (prima facie) ◊T isn’t really a sentence (unless sentences are allowed to include infinite 

conjunctions). A potential cost of this view is that extra work is needed to reconcile it with modal 

structuralist views in the structuralist consensus. For if we translate mathematical sentences as saying 

something like □(D→φ)◊D, it would seem that we need a single sentence to slip into the place of D. 

18 Whenever you can’t derive a contradiction from a first-order logical theory, there’s a set theoretic model 

which makes that theory true (see Gödel 1930). 
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However, a significant cost of taking our conceptions of mathematical structures to consist 

in finite or even infinite recursively axiomatizable collection of first-order logical statements is 

famously shown by Gödel’s Incompleteness Theorem. For the latter theorem tells us that any 

consistent such theory (which implies all the Peano Axioms, intuitive truths about the natural 

numbers) will fail to determine a truth value for some number theoretic sentence φ, and indeed fail 

to logically necessitate either φ or ¬φ.19 

Accordingly, one cost of both views now being discussed is that they prima facie conflict 

with intuitions that there must be definite right answers to all questions in the language of number 

theory. Many people feel a strong intuition that there’s a definite right answer to ‘Are there 

infinitely many twin primes (i.e., prime numbers separated by only one number)?’ and all such 

questions about sentences statable using only number theoretic relations and quantifiers restricted 

to the natural numbers. But on the pair of views under consideration now, one might have to say 

that some such questions are indeterminate. For, whatever conception of the numbers along these 

lines we have, there will be different possible ways of assigning extensions to ‘number’ and 

‘successor’ (while holding fixed the meaning of all first-order logical vocabulary) which both 

satisfy all the axioms in our conception but yield different truth-values for some possible sentence. 

Indeed, the problem gets worse. For Gödel’s theorem actually shows that each FOL theory 

of the kind mentioned above fails to determine an answer to some Con(T) sentence. These are 

sentences that only use mathematical vocabulary, but intuitively say that no number codes a proof 

of ‘0=1’ from premises in a certain algorithmically described first-order logical theory T. Thus 

	
19 The second claim follows by the Completeness theorem for first-order logic (see Gödel 1930). 
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we’re disposed to accept (and treat as an a priori, conceptually central, truth that constrains 

acceptable intuitive interpretations of our number talk) a biconditional of the following form: 

 

• Con(T) iff 0=1 isn’t provable from the axioms of T. 

 

Thus, if you accept that there are determinate facts about provability (and hence determinate truth-

values for all claims on the right-hand side of this biconditional), there’s some pressure to accept 

that there are also determinate truth values for all Con(T) sentences. 

Thus, even if you are happy to allow that some number theoretic questions are 

indeterminate, accepting definite facts about the syntactic consistency of theories creates pressure 

to say that all such Con(T) sentences have definite truth-values. Thus, intuitions about provability 

motivate saying that our conception of mathematical structures can transcend the claim that 

mathematical objects and relations (like ‘natural number’ and ‘successor’) apply so as to satisfy 

some finite (or recursively axiomatizable) collection of first-order logical sentences true. 

3.2.3 True ℕ Views 

The next cluster of views I want to mention avoids the problems above by saying that we 

(somehow) have the conceptual resources to refer to a unique intended natural number structure in 

some special way, but lack any logical notions with the power of full second-order quantification. 

One might cite Kronecker’s famous aphorism that “God made the natural numbers; all else is the 

work of man” (Gray 2008: 18) in this connection. 

This can seem a little awkward insofar as (you might think) we grasp the meaning of the 

natural number structure by something like accepting some simple first-order logical principles 
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together with a second-order logical induction axiom.20 But if we can grasp this, then why can’t 

we grasp full second-order quantification in other contexts? If we can grasp the intended natural 

number structure in this way, why can’t we use the same tool when stating other conceptions of 

mathematical structures? However, philosophers have explored different ways of thinking about 

what our conception of the natural number structure might be like. 

For one thing, works like Field (1989) have rather tentatively suggested different ways of 

using reference to physical objects to pick out an intended natural number structure. For example, 

Field tentatively suggests that if time has a certain structure, then we could use reference to 

temporal points and distance relations to pin down the structure we take the ‘natural numbers’ to 

have. And in Berry (forthcoming a), I suggest some ways that definite reference to a notion of 

physical possibility might be enough to pin down unique reference for one’s natural number talk. 

A different approach to conceptions of mathematical structures which allows us to uniquely 

pick out an intended natural number structure but not make sense of arbitrary second-order 

quantification involves a notion of ‘sufficiently clear mental pictures’. In some interesting 

philosophical remarks motivating more precise formal proposals, Feferman (2012) considers the 

formulability of various mental pictures of mathematical structures. He suggests that we can have 

a sufficiently clear conception of the intended natural number structure “represented by the tallies 

|,||,|||.” And he writes that our conception of the continuum in terms of points on a line is clearer 

	
20 Note that combining this principle this with PA− (i.e., the finitely many Peano axioms aside from instances 

of the induction schema) suffices to pin down a unique natural number structure, in the sense that all set 

theoretic models/interpretations of these theories which interpret second-order quantification standardly are 

isomorphic to each other 
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than the set-theoretic conception of it in terms of arbitrary subsets of the integers. He writes: “we 

have a much clearer conception of arbitrary sequences of points on the Hilbert (or Dedekind, or 

Cauchy-Cantor) line, or at least of bounded strictly monotone sequence, than we do of arbitrary 

subsets of the line. And … we have a clearer conception of what it means to be an arbitrary infinite 

path through the full binary tree than of what it means to be an arbitrary subset of N, but in neither 

case do we have a clear conception of the totality of such paths, resp. sets” (Feferman 2012). 

But Feferman suggests that neither of these conceptions are sufficiently clear to pick out a 

unique intended natural number structure.21 However, as Koellner (2016) points out, one might 

argue that this concept of having a sufficiently clear mental picture (and the philosophical 

motivations behind taking such a different attitude to different kinds of mental pictures of 

mathematical structures) is arguably itself not sufficiently clear.22 

	
21 Note that for these purposes having a clear conception doesn’t just mean being able to have some mental 

picture of that structure, e.g., imagining the hierarchy of sets by mentally picturing a V-shaped expanding 

column. For Feferman suggests that there’s a way in which this picture represents itself as being fully 

determinate yet fails to be so determinate. He writes: “There is no problem to put oneself in the mental 

frame of mind of ‘this is what the cumulative hierarchy looks like’, for which one can see that such and 

such propositions including the axioms of ZFC are (more or less) obviously true. I have taught set theory 

many times and have presented it in terms of this ideal-world picture with only the caveat that this is what 

things are supposed to be like in that world, rather than to assert that’s the way the world actually is” 

(Feferman 2012). 

22 Note that Feferman makes various precise formal proposals that draw the line concerning where we can 

vs. can’t expect determinate right answers to all mathematical questions. The question at issue concerns the 
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What kind of logical knowledge we need to make sense of our mathematical knowledge 

will naturally depend on the details of the specific proposal one adopts within this family of views. 

But, speaking abstractly, we will need to account for knowledge of ◊Φ claims where Φ employs 

whatever extra expressive resources are added to first-order logic. Feferman’s talk of mental 

pictures suggests a version of the structuralist consensus where accuracy about mathematics could 

be explained by an ability to determine when a mental picture (under some ‘method of projection’) 

represented something logically coherent, and when it necessitates the truth of various 

mathematical axioms. 

3.2.4 Second-Order Logical Conceptions 

Next, one might say that our conceptions of mathematical structures can employ second-order 

quantification (or something of similar expressive power) as well the standard first-order logical 

connectives.23 A benefit of this approach is that it lets us say that our conception of the natural 

numbers includes something like the following second-order induction axiom24: 

 

(∀X)[(X(0) ∧ (∀n)(X(n) → X(n + 1))) → (∀n)(X(n))] 

 

	
philosophical motivation for assigning that significance to the various precise mathematical distinctions 

Feferman highlights. 

23 Note that the idea here is that our conceptions of a mathematical structure can appeal to second-order 

quantification (or the like) while taking this notion to already have a precise meaning, which can be grasped 

prior to any choice to accept or consider any conceptions of mathematical structures employing it. 

24 Here I use 0 to abbreviate the corresponding statement in terms of Russell’s definite description. 
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This single axiom implies all the specific instances of the induction schema mentioned above. The 

second-order induction axiom above, when combined with first-order axioms, suffices to 

completely pin down the natural number structure, in the sense that any two ways of assigning 

extensions to ‘number’ and ‘successor’ while preserving the meaning of all logical connectives 

will have the same structure.25 Note that it employs a second-order quantifier ∀X to talk about ‘all 

collections of’ or ‘all possible ways of choosing from’ the objects in the domain of first-order 

quantification. 

Thus, on this view, we can write a finite sentence PA2 (Second-Order Peano Arithmetic) 

which logically necessitates the truth or falsehood of each sentence φ in the language of number 

theory. Note that facts about statements using second-order quantification can have logical 

consequences26 which outstrip what we’re able to derive from them. Thus, the fact that PA2 

logically necessitates each sentence of number theory or its negation doesn’t mean that we’ll 

always be able to determine the truth-value of such sentences. 

As noted above, adopting this view about our conceptions of mathematical structures tends 

to increase the amount of logical coherence knowledge needed to account for our seeming 

mathematical knowledge (and thence potentially the difficulty of answering access worries). For 

it allows that accounting for the mathematical knowledge we seem to have can require recognizing 

	
25 That is, it will be possible for a function to pair the ‘numbers’ on one interpretation to the numbers in 

another in a way that preserves how ‘successor’ (and hence plus and times) applies. 

26 That is, φ can have ψ as a logical consequence (logically necessitate that ψ in a sense which implies that 

e.g., every set theoretic model of φ which interprets second order quantification appropriately also satisfies 

ψ, even if the various axioms and inference rules we accept don’t let us derive ψ from φ. 
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◊φ facts, where φ is a statement involving second-order quantification. For example, someone who 

favors this approach will say that recognizing the logical coherence of our conception of the 

numbers requires recognizing a fact like ◊PA2 rather than merely something like ◊Q. 

Additionally, this approach can raise worries about reference to whatever additional logical 

vocabulary (e.g., full second-order quantification) is being cleared for use in stating our conception 

of mathematical structures.27 

A different potential weakness of this view (which may incline one to allow even more 

powerful resources to our conceptions of mathematical structures) concerns what to say about set 

theory. In response to Russell’s paradox, set theorists embraced an iterative hierarchy conception 

of sets. On the iterative hierarchy conception, all sets can be thought of as existing within a 

hierarchy built up in layers (that satisfy the well ordering axioms). There’s an empty set (the set 

that has no elements) at the bottom, and each layer containing sets corresponding to all ways of 

choosing sets generated below this layer.28 It follows from this conception of (what I’ll call) the 

width of the hierarchy of sets, that whenever the hierarchy of sets contains a set x, it also contains 

sets corresponding to all possible ways of choosing some elements from x. 

	
27 Perhaps one can address some of this worry by making a referential companions-in-innocence argument 

which holds that reference to conditional logical possibility is no more mysterious or problematic than 

reference to non-Humean facts about physical possibility. 

28 The iterative hierarchy of sets is sometimes formulated to include limit stages which simply collect layers 

from below, but don’t form any new sets. However, this variation makes no philosophical or mathematical 

difference, and it is easy to translate between the two ways of imagining the iterative hierarchy of sets being 

divided into layers 
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Interestingly, axioms stateable in second-order logic suffice to pin down a unique intended 

natural number structure (and hence right answers to number-theoretic questions) as well as a 

conception of the width of the hierarchy of sets and hence right answers to all questions which 

only depend on it, including the famous continuum hypothesis,29 a conjecture whose truth-value is 

famously not determined by the standard ZFC axioms of set theory. But no widely accepted axioms 

in second-order logic suffice to fix a unique intended height for the hierarchy of sets. 

Instead, we find ourselves in the following curious situation. Our naive conception of 

absolute infinity (the height of the actualist hierarchy of sets) turns out to be incoherent, not just 

unanalyzable. 

Specifically, a very common intuitive conception of the hierarchy of sets says that the 

hierarchy of sets goes ‘all the way up’—so no restrictive ideas of where it stops are needed to 

understand its behavior. However, if the sets really do go ‘all the way up’ in this sense, then it 

would seem that they should satisfy the following naive height principle: 

 

Naive Height Principle 

For any way some things are well-ordered by some relation R, there is an ordinal (and a 

layer of the hierarchy of sets) corresponding to it. 

 

But the layers of the hierarchy of sets are themselves well ordered, and there is no ordinal 

corresponding to this well-ordering, i.e., there is no ordinal which has the same order-type as the 

	
29 Are there sets intermediate in size between the natural numbers and the real numbers? 
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class of all ordinals. Thus, it would seem, the naive height ordering principle above can’t be correct. 

And once we reject this naive conception, there’s no obvious fallback conception that even appears 

to specify a unique intended height for the hierarchy of sets. 

Accordingly, philosophers considered a range of responses to this puzzle. First, of course, 

one can embrace the indeterminacy and, e.g., just say we mean some structure that satisfies second-

order logical versions of the ZFC axioms for set theory. This is a popular response, as most people 

have a much stronger intuition that there are definite right answers to questions about number 

theory than about set theory. 

Second, one could (in principle) propose a different description, in the language of second-

order logic, of a unique intended height for the hierarchy of sets, to replace the naive conception 

referenced above. However, no such proposal has gained significant popularity. And natural 

candidates for such a description of the intended height of the hierarchy of sets (e.g., saying that 

the hierarchy of sets is, in effect, the shortest possible structure satisfying the ZFC2 axioms—which 

turn out to imply width constraints on the iterative hierarchy of sets) tend to conflict with the 

generality mathematicians want set theory to have (Hellman 1994). 

 

3.2.5 Beyond Second-Order Logical Conceptions 

Allowing conceptions of mathematical structures to employ logical vocabulary (hence as 

antecedent meaningful) resources going beyond second-order quantification opens up to more 

responses to questions about our conception of the height of the hierarchy of sets above. 

Most simply, one could (in principle) say that we can somehow directly refer to a primitive 

notion of absolute infinity, which picks out a unique intended height of the hierarchy of sets. That 
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is, one could take this notion to be a logical primitive on par with first-order logical connectives 

and second-order quantification. However, this option has little intuitive appeal; after rejecting the 

incoherent notion of the hierarchy of sets going ‘all the way up’ discussed above, few people 

would say they even seem to grasp a unique intended height for the hierarchy of sets, in the way 

that many of us feel we do seem to grasp a favored notion of ‘all possible ways of choosing’ (and 

hence an intended notion of second-order quantification). And, to my knowledge, no one takes 

this route. 

Alternately, one can adopt a potentialist understanding of set theory. Potentialists can 

accept that there are definite right answers to all questions in the language of set theory, while 

denying that we have a conception of a unique intended height of the hierarchy of sets. For they 

interpret set theory as an exploration of how it would be (in some sense) possible for standard-

width initial segments of the hierarchy of sets to be extended. They wind up needing extra 

resources that go slightly beyond second-order quantification to express such extendability 

claims.30 

	
30 Putnam (1967) develops this idea by thinking about how it would be possible to have objects forming 

intended models of certain axioms for set theory but leaves the details of what modal notion he wants to 

invoke somewhat vague. Later work by Hellman (1994) and Berry (2018a) proposes different ways of 

cashing this idea out by using a notion of logical possibility which has been argued to be an independently 

attractive primitive. Hellman uses logical possibility, plural quantification and mereology (to simulate 

second order relation quantification). I use a generalization of the logical possibility operator. 

Parsons (1977, 2005, 2007), Linnebo (2010, 2013, 2018) and Studd (2019) take the idea in a 

different direction. Rather than thinking about how it would be logically possible for there to be objects 
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In this way, we see that members of the structuralist consensus can hold a range of different 

theories about the nature of our conceptions of mathematical structures, and these views 

correspond to different views on what logical coherence knowledge one needs to account for 

mathematical knowledge and hence perhaps how hard mathematical access worries are to solve. 

 

4. Conclusion 

In this chapter, I have advocated a ‘lazy’ approach to formulating EDAs, which appeals to informal 

coincidence avoidance intuitions that are widely accepted as good guides to theory choice in the 

sciences. I have noted how mathematical practice has inspired a structuralist consensus, on which 

mathematical EDAs can plausibly be reduced to EDAs concerning logical coherence, and 

abduction-based stories have been proposed to account for our possession of some knowledge of 

logical coherence. Finally, I’ve reviewed and contrasted certain popular and/or natural ideas about 

what our conceptions of mathematical structures are like—how they imply different things about 

how much logical coherence knowledge is needed to account for the kind of mathematical 

knowledge we seem to have in answering EDAs. 

	
satisfying set-theoretic axioms, Linnebo and Studd say that whatever sets exist (if any) exist necessarily. 

But they cash out set theory in terms of how it would be interpretationally possible for a hierarchy of sets 

to grow, where this involves something like successively reconceptualizing the world in terms of longer 

and longer actualist hierarchies of sets. 
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I personally hold a view on the extreme realist/generous end regarding what logical 

vocabulary our conceptions of mathematical structures can employ,31 and I think that even on this 

generous understanding of our conception of mathematical structures, the kind of broadly 

abductive story invoked above can account for enough logical knowledge to answer mathematical 

EDAs. However, this degree of optimism about the power of abduction/IBE to reliably extend our 

beliefs about logical coherence is controversial. So, it’s worth noting that philosophers who reject 

the kinds of truth-value realist intuitions that I’ve noted motivate this understanding of our 

conceptions of mathematical structures might need less optimism about the power of abduction to 

answer EDAs along the lines mentioned above.32 
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